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We study the inviscid mechanisms governing the three-dimensional evolution of an 
axisymmetric jet by means of vortex filament simulations. The spatially periodic 
calculations provide a detailed picture of the processes leading to the concentration, 
reorientation, and stretching of the vorticity. In the purely axisymmetric case, a 
wavy perturbation in the streamwise direction leads to the formation of vortex rings 
connected by braid regions, which become depleted of vorticity. The curvature of the 
jet shear layer leads to a loss of symmetry as compared to a plane shear layer, and 
the position of the free stagnation point forming in the braid region is shifted towards 
the jet axis. As a result, the upstream neighbourhood of a vortex ring is depleted of 
vorticity at a faster rate than the downstream side. When the jet is also subjected 
to a sinusoidal perturbation in the azimuthal direction, i t  develops regions of 
counter-rotating streamwise vorticity, whose sign is determined by a competition 
between global and local induction effects. In  a way very similar to plane shear 
layers, the streamwise braid vorticity collapses into counter-rotating round vortex 
tubes under the influence of the extensional strain. In addition, the cores of the 
vortex rings develop a wavy dislocation. As expected, the vortex ring evolution 
depends on the ratio RIB of the jet radius and the jet shear-layer thickness. When 
forced with a certain azimuthal wavenumber, a jet corresponding to RIB = 22.6 
develops vortex rings that slowly rotate around their unperturbed centreline, thus 
preventing a vortex ring instability from growing. For RIB = 11.3, on the other 
hand, we observe an exponentially growing ring waviness, indicating a vortex ring 
instability. Comparison with stability theory yields poor agreement for the 
wavenumber, but better agreement for the growth rate. The growth of the 
momentum thickness is much more dramatic in the second case. Furthermore, it  is 
found that the rate at which streamwise vorticity develops is strongly affected by the 
ratio of the streamwise and azimuthal perturbation amplitudes. 

1. Introduction 
Axisymmetric jets have been the focus of numerous analytical, experimental, and 

numerical studies. The considerable research efforts devoted to improving the 
understanding of the evolution and dynamics of the governing flow structures is 
hardly surprising considering the impact that fluid mechanical processes in jets have 
in various applications. For example, problems of such diverse nature as noise 
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generation, mixing, and flame stability are intimately linked to the instability 
mechanisms and large-scale structures of the flow. At  the same time, axisymmetric 
jets represent one of the prototype classes of free shear flows, which renders their 
transitional behaviour as well as the dynamics of the fully turbulent flow interesting 
from a more fundamental point of view as well. 

Past studies have employed different approaches towards achieving a more 
complete understanding. Early investigations of the linear stability of jets (Batchelor 
& Gill 1962) demonstrate the instability of the near-jet top-hat velocity profile with 
respect to axisymmetric as well as helical modes. As the velocity profile becomes 
smoother and more like that of a far jet, all but the first of the helical modes are 
stabilized. These investigations subsequently were extended to include viscous 
effects (Morris 1976), slightly diverging velocity profiles (Crighton & Gaster 1976 ; 
Plaschko 1979; Strange & Crighton 1983) as well as compressibility (Michalke 1971). 
Michalke & Herrman (1982) give quantitative results for inviscid spatial growth 
rates of the axisymmetric and first helical modes as a function of the external flow 
as well as of the ratio between shear-layer momentum thickness and jet radius. 
Cohen & Wygnanski (1987) compare inviscid linear stability results with ex- 
perimental data for transitional flow, and they find good quantitative agreement. In 
particular, for the naturally developing jet, they successfully employ the linear 
stability results to predict the spectral distribution of the velocity perturbations over 
short distances. They furthermore point out the importance of the mean flow 
divergence, especially for the relative growth of the axisymmetric and first helical 
mode, respect,ively. Their results hence confirm that inviscid theory is suitable even 
for quantitative predictions of the flow evolution, and that viscosity plays only a 
minor role. 

Experimental investigations as well have underlined the importance of axi- 
symmetric and helical perturbations. They demonstrate the emergence of ring-like 
and helical vortical structures in the transitional regime downstream of the nozzle 
(e.g. Browand & Laufer 1975 ; Yule 1978 ; the pictures by Wille and Michalke in Van 
Dyke 1982; Kusek, Corke & Reisenthel 1989; I. Wygnanski 1990, personal 
communication). For a more top-hat-shaped initial profile of the jet, the laminar 
shear layers emanating from the nozzle have furthermore been shown to undergo up 
to three pairings as well. Several experiments indicate that the turbulent flow regime 
gives rise to many of the same phenomena. Crow & Champagne (1971), by 
periodically forcing a turbulent jet, were able to demonstrate the existence of a 
‘preferred mode’, i.e. of coherent structures having the form of vortex rings. These 
findings were confirmed and extended by Gutmark & Ho (1983). Many of the 
experiments, e.g. Crow & Champagne (1971), Petersen (1978), Zaman & Hussain 
(1980) as well as Hussain & Zaman (1980), Drubka, Reisenthel & Nagib (1989), 
exhibit a subharmonic pairing mode near the jet exit. A t  high turbulence levels, the 
structures do not appear in a very clean and pure fashion anymore, and processes 
such as fractional pairing and tearing gain importance (Hussain & Clark 1981). As 
the core size of the vortex rings approaches the radius of the jet, curvature effects 
tend to dominate over thin shear-layer effects, and the subharmonic mode appears 
to become less important. In particular, Hussain & Zaman (1981) do not find any 
indication of pairing beyond the potential core. Dimotakis, Miake-Lye & Pap- 
antoniou (1983) as well as Tso & Hussain (1989) have demonstrated the dominance 
of ring-like and helical coherent structures in the turbulent far field as well. 
Dimotakis et al. also critically review the concepts of intermittency and entrainment. 
In particular they suggest, on the basis of flow visualization experiments, that the 
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entrainment mechanism is best described as purely kinematic instead of by gradient 
diffusion arguments. Their data indicate that the large-scale structures of the 
turbulcnt flow region set the irrotational ambient fluid in motion via the Biot-Savart 
induction. Consequently, knowledge of these dominant structures is prerequisite to 
an improved understanding and modelling of entrainment (Broadwell & Dimotakis 
1986). Even at  extremely high Reynolds numbers, coherent structures in the form of 
rings and helices are observed by Mungal & Hollingsworth (1989), who, along with 
Dimotakis et al., present evidence that the mechanisms responsible for generating 
and sustaining these structures appear to be largely independent of the Reynolds 
numbers. 

There have, furthermore, been some observations of three-dimensional structures 
involving streamwise vorticity (Becker & Masaro 1968 ; Browand & Laufer 1975 ; 
Yule 1978 ; I. Wygnanski 1990, personal communication). While these flow 
visualization experiments show vortex rings that become unstable with respect to 
azimuthal bending waves, others also seem to indicate a streamwise structure in the 
braid region connecting the rings (Agiii & Hesselink 1988). Similarly to the plane 
mixing layer, the question arises of where this three-dimensionality originates, i.e. 
where it is first amplified, and what causes it to grow. Some insight into the 
mechanisms governing the three-dimensional evolution of the jet can be gained from 
recent work performed on plane mixing layers. Numerical calculations (Corcos & 
Sherman 1984; Corcos & Lin 1984; Lin & Corcos 1984; Ashurst & Meiburg 1988) as 
well as experimental results (Lasheras, Cho & Maxworthy 1986; Lasheras & Choi 
1988) indicate that concentrated streamwise structures appear in the braid region 
between the Kelvin-Helmholtz rollers, thus lending support to the model first 
suggested by Bernal(l981) and Bernal & Roshko (1986). However, the linear theory 
of Pierrehumbert & Widnall (1982) as well as the investigations by Corcos & Lin 
(1984) and Klaassen & Peltier (1989, 1991) suggest the possibility of significant 
streamwise vorticity production in the cores of the spanwise rollers as well. In  
addition, it is known that the vortex rings evolving in the axisymmetric jet have 
distinctly different instability modes from the plane rollers, so that it is not clear to 
what extent the plane mixing layer results are applicable to axisymmetric jets. Some 
guidance with respect to vortex ring instability is provided by the linear stability 
analyses performed by Widnall and associates (Widnall & Sullivan 1973 ; Widnall, 
Bliss & Tsai 1974). They observe that instability sets in for bending waves that result 
in vanishing rotation rates of the vortex rings. Under these circumstances, the wave 
amplitude can grow along the extensional direction of the strain field produced by 
the overall vorticity field. Again, we have to keep in mind that the applicability of 
vortex ring stability results to jets may be limited, as the overall velocity and strain 
fields are quite different. Hence, one of the goals of the present investigation is to 
identify common features as well as differences between the behaviour of vortex rings 
and axisymmetric jets on one hand, and between axisymmetric jets and plane mixing 
layers on the other. Very recently, strongly forced constant-density jets have 
furthermore been shown experimentally to develop side jets as well as a large variety 
of distinct topological vorticity modes (Lasheras, Lecuona & Rodriguez 1990 ; 
Liepmann 1990 ; Monkewitz & Pfitzenmaier 1990, and references therein). These 
highly interesting flow patterns possibly involve a complex interaction of braid, ring 
and translative instabilities. A detailed numerical companion study is under way and 
will be published elsewhere. 

To date, there have been few numerical investigations of axisymmetric jets, in 
particular when compared to the much more extensive efforts devoted to plane 
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mixing layers. Presumably, the reasons for the relative lack in numerical simulations 
of jets are both numerical and physical. Cartesian coordinates are somewhat simpler 
to treat with standard grid-based method such as finite difference or spectral 
techniques than cylindrical coordinates. In addition, the early stages of a jet are 
supposed to be similar to those of a plane mixing layer at high Reynolds numbers, 
so that the mixing layer is perceived as the more general case. However, as the 
thickness of the jet shear layer increases and vortex rings of larger core sizes form, 
curvature begins to play an important role. The two-dimensional calculations of 
spatially growing axisymmetric compressible subsonic jets performed by Grinstein, 
Hussain & Oran (1988) show some of the differences with respect to plane mixing 
layers. The authors furthermore point out that three-dimensional effects should 
become increasingly more important at downstream locations beyond the potential 
core. Ghoniem, Aly & Knio (1987) study the vorticity dynamics in the early stages 
of the three-dimensional evolution of an isolated vortex ring. Agiii & Hesselink 
( 1988) present a three-dimensional vortex dynamics calculation of a temporally 
evolving axisymmetric jet. While they observe the formation of vortex rings as well 
as some three-dimensionality both in the ring and in the braid regions, their primary 
interest concerns novel optical techniques for the purpose of flow visualization. 
Hence they do not attempt a detailed analysis of the mechanisms governing the 
three-dimensional evolution of the flow. 

In summary, the above combination of experimental and theoretical investigations 
appears to lead to the following picture. At low values of the Reynolds number, the 
transitional region of an axisymmetric jet seems to be dominated by vortex rings 
and/or helical vortex structures forming as a result of essentially inviscid 
instabilities. These structures undergo instabilities of their own, which lead to a 
highly three-dimensional and subsequently turbulent character of the flow field. At 
higher Reynolds numbers, the coherent structures of the jet shear layer seem to 
undergo similar processes. Although the spatial and temporal fluctuations related to 
the turbulent flow obstruct the view of the dominant underlying coherent structures, 
recent experimental investigations of fully turbulent flows indicate that even in the 
far field of fully developed flows at very high Reynolds numbers ring-like and helical 
structures dominate the flow. The mechanism for the emergence and reinforcement 
of these coherent structures appears to be essentially inviscid and independent of the 
Reynolds number. As a result, it seems to be worthwhile to investigate the three- 
dimensional evolution of axisymmetric jets numerically on the basis of inviscid 
vortex dynamics simulations. As these purely Lagrangian techniques do not require 
a fixed grid, a predominantly axisymmetric flow is no more complicated to treat than 
a plane one. At the same time, the advantage is maintained of a moving Lagrangian 
grid which concentrates its resolution in those areas of strong activity. 

It is our hope that these calculations will shed some light on the three-dimensional 
structure of axisymmetric jets, which is still relatively little understood as compared 
to plane mixing layers and wakes. While both experimental and numerical 
investigations of plane mixing layers have demonstrated the emergence of 
concentrated longitudinal vortices in the braid region between the spanwise 
Kelvin-Helmholtz rollers, the character of the streamwise vortical structures in jets 
has not yet been documented in detail. At  this point, it is of interest to note that the 
axisymmetric jet shares features with both the single mixing layer and the plane 
wake. On one hand, the vorticity corresponding to the velocity profile of an 
axisymmetric jet has only a circumferential component, which is of the same sign 
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everywhere. On the other hand, if we look at vorticity contours in a plane containing 
the jet axis, we see vorticity of both signs. As a result, while some aspects of the 
three-dimensional evolution can likely be explained on the basis of viewing the jet as 
a plane mixing layer folded around a longitudinal axis, other aspects might be more 
similar to the evolution of a plane wake exhibiting vorticity of both signs. Since plane 
wake flows have been shown to exhibit the possibility for a topological change of the 
three-dimensional vorticity field, i.e. a reconnection involving vortex tubes from 
both sides of the wake and leading to the formation of closed vortex loops (Meiburg 
& Lasheras 1988; Lasheras & Meiburg 1990), it would be of interest to investigate 
jets from this point of view as well. The calculations to be described in this paper are 
intended to shed light on the above issues. Preliminary results of the present 
investigation were reported by Meiburg, Lasheras & Martin (1989) and Martin, 
Meiburg & Lasheras (1990). 

The organization of the paper is as follows. The main features of the numerical 
techniques as well as some data concerning convergence of the calculations will be 
presented in $2. Section 3 will describe our numerical simulations. While, in this 
paper, we will focus on the three-dimensionality in jets whose primary structures are 
vortex rings, Part 2 of this investigation (Martin & Meiburg 1991) will concentrate 
on jets dominated by vortex helices. The results of a two-dimensional axisymmetric 
calculation will form the basis for the subsequent discussion of three-dimensional 
simulations. Our observations will be presented in the light of earlier theoretical and 
experimental findings. Finally, in $4 we will draw some conclusions about the nature 
of the observed mechanisms and discuss possibilities for future research. 

2. Numerical technique 
Only a small fraction of the incompressible flow field under consideration is 

rotational. Furthermore, linear stability investigations as well as experiments show 
that both the initial formation of the large-scale structures and their nonlinear 
evolution farther downstream are dominated by inviscid mechanisms. As a result, it 
appears attractive to simulate three-dimensionally evolving jets on the basis of the 
inviscid dynamics of their vorticity. We hence employ a vortex filament technique 
that is essentially identical to the one used in earlier investigations of plane shear 
layers and wakes (Ashurst & Meiburg 1988; Meiburg & Lmheras 1988; Lasheras & 
Meiburg 1990). It is based on the theorems of Kelvin and Helmholtz and follows the 
general concepts reviewed by Leonard (1985). As a detailed account is provided in 
these earlier references, we limit ourselves here to a description of the main features. 
Each filament is represented by a number of node points along its centreline, through 
which a cubic spline is fitted to give it a smooth shape. The Biot-Savart law is 
evaluated assuming an invariant shape function of the vorticity distribution around 
the filament centreline, based on the functional form 

where we use the notation of Leonard (1985). Here r(s)  denotes the position of the 
vortex filament centreline, with s being the arclength. Incorporation of this vorticity 
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FIGURE 1. Convergence of the unperturbed velocity profile with increasing number of periodic 
images in the streamwise direction: . . . . . . , closest image only; ---, one periodic image; ---, 
two periodic images ; -, three periodic images. 

distribution into the Biot-Savart law then allows us to obtain the velocity u at any 
position x by integrating over the arclength of all N filaments in the flow field: 

where r, denotes the strength of the ith vortex filament. 
For the numerical simulation, we limit ourselves to the problem of a temporally 

growing jet. Although the spatially developing problem corresponds more close to 
the experimental situation, we believe some detailed insight can be gained on the 
basis of the temporally evolving flow. Previous experience concerning three- 
dimensional plane shear layers and wakes leads us to expect that the axisymmetric 
instability, the formation of concentrated three-dimensionally evolving vortex rings, 
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and the related extensional strain field will dominate the evolution of the jet; all 
these mechanisms are captured by the temporally growing flow. Under this 
assumption, we can concentrate the resolution on one streamwise wavelength, which 
allows us to take the calculation farther in time. Furthermore, we avoid problems 
related to the treatment of inflow and outflow boundary conditions. The wavelength 
in the streamwise direction, i.e. the length of our control volume, is based on 
Michalke & Hermann’s (1982) stability analysis for the spatially evolving jet. By 
using Gaster’s (1962) transformation, we obtain the wavelength of maximum growth 
for the temporally evolving problem. Since the Biot-Savart integration has to be 
carried out over the entire vorticity field, the effect of the periodic images of the 
vortex filaments must be included. Test calculations show that the axisymmetric 
velocity profile corresponding to infinitely many periodic images can be approxi- 
mated to within 2% by taking account three images each in the upstream and 
the downstream direction (figure 1). We furthermore assume periodicity in the 
circumferential direction, which means that we only have to discretize one section of 
the jet. Of course, the BioGSavart integration again has to be extended over the 
periodic images in the azimuthal direction. 

We typically discretize one streamwise wavelength into 59 filaments. For the 
typical case of an azimuthal wavenumber of five, each filament initially contains 24 
segments per circumferential wavelength. These numbers emerged from test 
calculations, in which we refined the discretization until a further increase in the 
resolution resulted in very small changes. The Biot-Savart integration is carried out 
with second-order accuracy both in space and in time by employing the 
predictor-corrector time-stepping scheme and the trapezoidal rule for spatial 
integration, respectively. Below we will present a long- time comparison between two 
calculations employing different discretizations in order to demonstrate that they are 
well converged. As the flow develops a three-dimensional structure, the vortex 
filaments undergo considerable stretching. To maintain an adequate resolution, the 
cubic spline representation of the filaments is used to introduce additional nodes, 
based on a criterion involving distance and curvature. Furthermore, the time-step is 
repeatedly reduced as local acceleration effects increase. The filament core radius (r 
decreases as its arclength increases to conserve its total volume. 

We take the velocity difference between the centreline and infinity as our 
characteristic velocity. The thickness of the axisymmetric shear layer serves as the 
characteristic lengthscale, which results in the filament core radius CT = 0.5. The jet 
radius R is taken to be 5 ,  and we obtain the ratio of jet radius R and momentum 
thickness 8 of the jet shear layer as RIB = 22.6. Hence, the ratio R/(r % 1, and we are 
well within the range of validity of the filament model. 

3. Results 
3.1. Axisymmetric evolution 

Experiments and theoretical analysis for the plane mixing layer have suggested 
two instability mechanisms which can lead to a three-dimensional evolution of the 
two-dimensional base flow. The stability analysis by Pierrehumbert & Widnall 
(1982) of a perturbed array of Stuart vortices and the subsequent investigations by 
Klaassen & Peltier (1989, 1991) of Stuart vortices as well as of numerically computed 
nonlinear vorticity distributions in shear layers indicate that the spanwise rollers can 
develop a core instability. On the other hand, experiments by Bernal & Roshko 
(1986) and Lasheras & Choi (1988) as well as calculations by Lin & Corcos (1984) and 



8 6 4 2 

2
0

 

-2
 

-4
 

-6
 

-8
 

X
 

I 
I 

0
 

X
f

 

8 6 4 2 

z
o

 

-2
 

-4
 

-6
 

-8
 

c 
5 

8 6 4 2 

z
o

 

-2
 

-4
 

-6
 

-8
 

t 
X

 

F
IG

U
R

E
 

2.
 T

he
 a

xi
sy

m
m

et
ri

c 
ev

ol
ut

io
n 

of
 a

 r
ou

nd
 j

et
 p

er
tu

rb
ed

 b
y 

a
 s

in
us

oi
da

l 
ci

rc
ul

at
io

n 
di

st
ri

bu
ti

on
. 

P
er

sp
ec

ti
ve

 v
ie

w
s 

of
 t

h
e 

vo
rt

ex
 

fi
la

m
en

ts
 a

re
 s

ho
w

n 
as

 w
el

l 
aa
 c

on
to

ur
 p

lo
ts

 o
f 

th
e 

ci
rc

um
fe

re
nt

ia
l 

vo
rt

ic
it

y 
fo

r 
ti

m
es

 0
.0

5
,4

, 8
, 1

2,
 1

6.
 O

nl
y 

ev
er

y 
se

co
nd

 f
il

am
en

t 
an

d
 e

ve
ry

 
te

nt
h 

no
de

 a
lo

ng
 e

ac
h 

fi
la

m
en

t 
is

 p
lo

tt
ed

. 
N

ot
ic

e 
th

e 
em

er
ge

nc
e 

of
 a

 c
on

ce
nt

ra
te

d 
vo

rt
ex

 r
in

g.
 T

he
 u

ps
tr

ea
m

 n
ei

gh
bo

ur
ho

od
 o

f 
th

e 
vo

rt
ex

 
ri

ng
 e

xp
er

ie
nc

es
 t

h
e 

st
ro

ng
es

t 
de

pl
et

io
n 

of
 v

or
ti

ci
ty

 d
ue

 t
o

 s
tr

on
g 

ex
te

ns
io

na
l 

st
ra

in
, w

hi
ch

 m
ak

es
 i

t 
a

 p
ri

m
e 

ca
nd

id
at

e 
fo

r 
th

e 
em

er
ge

nc
e 

of
 

st
re

am
w

is
e 

vo
rt

ic
it

y.
 



Three-dimensional evolving jets 279 

FIQURE 3. The direction of the velocity field at time t = 10 in the reference frame moving with the 
emerging vortices. Observe the displacement of the free stagnation point in the braid region 
towards the jet centreline due to the curvature of the jet shear layer. This leads to a loss of 
symmetry with respect to the braid region. 

stability analysis by Neu (1984) suggest that small perturbations near the free 
stagnation point in the braid region can be amplified in the extensional strain field 
of the spanwise rollers and collapse into concentrated streamwise braid vortices. In, 
both cases, the nonlinear evolution of the underlying two-dimensional base flow 
represents the key to understanding the three-dimensional evolution. As we expect 
the same to be the case for the axisymmetric jet as well, we will first describe the 
evolution of the two-dimensional base flow. To that end, we have carried out a 
simulation of the nonlinear evolution of a jet with an axisymmetric perturbation 
only. The initial perturbation consists of a streamwise sinusoidal modification of the 
strength r, of the equally spaced filaments 

f, = f,,( 1 + e sin (2nx/h)),  

where f,, is the filament strength in the unperturbed flow. h is the streamwise 
wavelength, which we selected as 2n. According to Michalke & Hermann’s data, this 
wavelength will experience amplification with close to the maximum growth rate. In 
this way, we model the periodic strengthening and weakening of the jet shear layer 
as it might be produced by acoustic forcing. The amplitude E of the perturbation 
circulation is 5 %  of the circulation of the unperturbed flow. 

Perspective views of the configuration of the vortex filaments are shown in figure 
2 for several times. For clarity, the filaments are shown in a reference frame moving 
in the streamwise x-direction with the velocity of the evolving structures. It is clearly 
visible that the axisymmetric shear layer undergoes a Kelvin-Helmholtz-like 
instability, whereby the vorticity concentrates in vortex rings. The braid regions 
connecting the emerging vortex rings become progressively more depleted of 
vorticity, and in the reference frame moving with the velocity of the emerging vortex 
rings free stagnation points are formed. The corresponding streamline pattern would 
show the transition from parallel flow to Kelvin’s cats eye pattern with critical points 
in the form of centres at the vorticity maxima and saddles in the braids. This 
evolution is reflected in the corresponding vorticity contour plots as well. We observe 
the formation of vortex rings with nearly circular cores connected by braids. 
However, while in a temporally growing plane shear layer we would expect the free 
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FIGURE 4. Contour plot of the size of the positive eigenvalue of the deformation tensor at time 
t = 10. Observe that the extensional strain is larger in the upstream neighbourhood of a vortex ring, 
thus leading to a more intense depletion of this part of the braid region. 

stagnation points to form a t  the centre between the vorticity maxima, and the 
vorticity to maintain a symmetric distribution with respect to the stagnation points, 
this is not the case for the axisymmetric jet. The curvature of the vortex rings breaks 
this symmetry, and the free stagnation point is shifted towards the centre of the jet. 
This shift is due to the self-induced velocity of the vortex rings and can clearly be 
recognized from figure 3, which shows the direction of the velocity field in the 
reference frame moving with the emerging rings. A similar effect was observed by 
Meiburg & Lasheras (1988) in plane wakes. The shift of the free stagnation point 
destroys the symmetry of the deformation field with respect to the braid vorticity, 
aa can be seen from figure 4, which shows the field of extensional strain. Figure 4 is 
consistent with the braids’ depletion of vorticity and the formation of vortex rings 
with nearly circular cores. As a result of the above loss of symmetry, the upstream 
and the downstream halves of the braid region are being depleted at different rates. 
Specifically, the extensional strain field in the braid region results in the more intense 
depletion of vorticity of the immediate upstream neighbourhood of a vortex ring as 
compared to the downstream side. This can best be illustrated by means of figure 5, 
which shows the streamline pattern of a jet idealized as two rows of point vortices. 
Only the braid vorticity located downstream of position 1 will eventually become 
entrained into the downstream vortex, whereas all of the braid vorticity upstream of 
1 will be swept towards the upstream vortex. In particular, a vortex line located at 
1 and periodically perturbed in the spanwise direction, will be swept partly in the 
upstream and partly in the downstream direction. 

On the basis of this axisymmetric evolution, we can now develop a scenario for the 
evolution of small three-dimensional perturbations near the free stagnation points. 
Just as for the plane mixing layer, we would expect these perturbations to be 
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FIQURE 5. Streamline pattern of a jet idealized as two rows of point vortices, in the reference frame 
moving with the vortices. The displacement of the free stagnation point towards the jet centreline 
leads to a situation in which only the braid vorticity downstream of position 1 will become 
entrained into the downstream vortex, whereas the vorticity upstream of 1 will eventually be swept 
towards the upstream vortex. In particular, a vortex line located at 1 with a sinusoidal 
perturbation in the direction perpendicular to the (5, y)-plane will partly by swept in the upstream 
and partly in the downstream direction. 

stretched out in the direction of the principal axis of strain, i.e. mainly along the 
direction of the braid region. In  this way, a streamwise vorticity component would 
be formed. As the stretching is most intense in the downstream half of the braid 
region, it would be reasonable to expect vortex lines to acquire a larger streamwise 
component in the upstream neighbourhood of a vortex ring than on the downstream 
side. On the other hand, as a result of this more intense extensional strain, fewer 
vortex lines will be left in the upstream neighbourhood of the vortex ring. By taking 
into account that the upstream braid is drawn through the centre of the ring, 
whereas the downstream braid is wrapped around the outside, this should lead to a 
situation in which fewer vortex filaments, but each with a larger streamwise 
component, exist near the jet axis than further away. 

It appears to be much harder to speculate about the evolution of three- 
dimensional perturbations in the ring region, as it is not clear to what extent the 
translative instability mechanism of a plane mixing layer considered by Pierre- 
humbert & Widnall as well as by Klaassen & Peltier is applicable. The same holds 
for the ring stability analyses performed by Widnall and associates, who consider an 
isolated vortex ring and do not account for braids or the presence of further rings, 
which may affect the ring’s stability characteristics. Both a stabilization and a 
destabilization of the ring region appear possible, as well as a change in the most 
unstable azimuthal wavenumber, depending on whether or not the additional 
vorticity in the flow field promotes the self-induced rotation of an individual ring. 
The fully three-dimensional simulations to be discussed in the following will be 
helpful in testing the above hypotheses concerning three-dimensional braid 
perturbations as well as in elucidating the processes in the ring region. 
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FIGURE 6. Evolution of an axisymmetric jet perturbed by a streamwise wave aa well aa by an 
azimuthal wave that introduces radial perturbation vorticity corresponding to a corrugated nozzle. 
(a) Side view and (b) axial view of the vortex filaments at time 0.62. For clarity, the side view 
displays only those vortex filament sections located at y > 0, but over two streamwise wavelengths. 
The axial view indicates the form of the azimuthal wave. The contours of circumferential vorticity 
shown in (c) still display a nearly constant vorticity distribution. While during this early stage the 
contours of the streamwise vorticity component - shown in ( d )  for x = 1 - hardly depend on 2, the 
sign of the streamwise vorticity indicates the dominant effect of the global induction. 

3.2. Three-dimensional evolution of a radial perturbation 
We now proceed to describe the evolution of a jet initially perturbed by one 
axisymmetric wave and one azimuthal wave. While the axisymmetric wave has the 
same form and amplitude as in the previous simulation, the azimuthal wave displaces 
the filament centreline in the radial direction, thus introducing a perturbation 
vorticity component in the radial direction. The displacement amplitude is 5 % of the 
jet radius, which is relatively large. Hence the distance r of the filament centreline 
from the jet axis is given as a function of the circumferential coordinate 4 by 

r = R(1+0.05sin (k@)), 

where k is the azimuthal wavenumber. We will discuss the effect, of the amplitude 
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below. Lasheras has introduced corresponding perturbations in preliminary 
experiments by using corrugated nozzles instead of perfectly axisymmetric ones 
(Meiburg et al. 1989). We set the azimuthal wavenumber to 5, i.e. we have 5 
wavelengths around the circumference of the jet. This value was selected for 
comparison with Lasheras’ flow visualization experiments (Martin et al. 1990). 
Furthermore, other experimental investigations (e.g. Glauser, Zheng & Doering 
1991) have found that wavenumbers in the neighbourhood of 5 result in maximum 
growth rates. We will discuss the influence of the azimuthal wavenumber in detail 
elsewhere. 

Figure 6 shows a side view as well as a streamwise view of the vortex filament 
configuration at time t = 0.62, which is shortly after the start of the simulation. For 
clarity, the side view shows the vortex filament centrelines only in the half space 
y > 0, but over two axial wavelengths. As the initial perturbations do not contain any 
streamwise vorticity, the filament centrelines still appear as nearly vertical lines in 
the sideview. The front view clearly shows the circumferential corrugation introduced 
by the wavy azimuthal perturbation. 

The azimuthal wave breaks the axisymmetry, and in conjunction with the 
streamwise wave it will immediately result in the formation of a streamwise vorticity 
component, as the radial perturbation vorticity is tilted into the streamwise 
direction by the jet shear layer. There exist two different mechanisms, whose relative 
importance will determine in which direction the radial vorticity component is tilted 
as regions of more concentrated vorticity form. On one hand, the overall velocity 
field associated with an axisymmetric jet has a maximum at the centreline and 
decays in the radial direction. If it  is this global induction that dominates the 
generation of streamwise vorticity, those sections of the filaments farther away from 
the jet axis should travel at a smaller velocity in the x-direction than the ones nearer 
to the jet axis, thus determining the local sign of the streamwise vorticity 
component. On the other hand, it is well known (Batchelor 1967) that the self- 
induced velocity of a curved vortex tube is proportional to the tube’s circulation and 
curvature. Since for the radial perturbation described above, the local curvature of 
the vortex filaments has a maximum where the filaments are farthest away from the 
jet axis, this local induction effect tends to accelerate the outer sections of the vortex 
filaments, i.e. to counteract the global induction effect. As a result, the sign of the 
streamwise vorticity component will be determined by a competition between local 
and global induction. It is interesting to note that in this respect the jet behaves like 
a plane shear layer, in which local and global induction also act in opposite 
directions. 

For the present simulation, contours of constant streamwise vorticity at x = 1 and 
t = 0.62 (cf. figure 6) already show the formation of weak streamwise vorticity whose 
sign alternates along the circumference. During this early stage, the corresponding 
contours look almost identical for all streamwise positions. The sign of the 
streamwise vorticity component corresponds to the outer filament sections’ trailing 
the ones nearer to the jet axis. In  other words, global induction dominates the early 
stages of streamwise vorticity generation in the present situation. We furthermore 
notice that the streamwise vorticity contours are fairly elongated, i.e. the streamwise 
vorticity has more the character of a sheet than that of round concentrated vortices. 
Of course, these sheets are still very weak a t  this early stage. The contours of 
constant circumferential vorticity at z = 0 and t = 0.62 depicted in figure 6(c) show 
the slightly perturbed axisymmetric shear layer. 

Both the axisymmetric and the azimuthal wave have grown considerably at time 
10 FLY 230 
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FIQURE 7. The radially perturbed jet with RIB = 22.6 at time 7.81 : (a) side view and (b) streamwise 
view of the vortex filaments. Regions of concentrated vorticity evolve, while the emerging braid 
regions in between become depleted of vorticity. Observe the growing waviness of the filaments in 
these braid regions. The initial azimuthal perturbation in the form of a corrugation has grown, 
which is consistent with the direction of the streamwise vorticity. (c) Contours of the circumferential 
component. (d), (e) Contours of the streamwise vorticity at z = 1 and at x = 3.15. Notice the 
appearance of counter-rotating streamwise vorticity in the emerging ring region near x = 3.15. 
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t = 7.81. The sideview of the filaments in figure 7 shows the concentration of vorticity 
into evolving vortex rings. The braid region is being depleted of filaments, and those 
filaments still remaining there exhibit an increasing waviness, indicating a growing 
streamwise vorticity component. The axial view furthermore shows that the 
displacement of the filaments in the form of a corrugation has grown as well. This is 
in agreement with the sign of the emerging streamwise vorticity discussed before, 
whose effect on the corrugation is indicated in figure 7 (b) by arrows. This effect of the 
overall streamwise vorticity on the evolution of the corrugation amplitude of the 
emerging vortex rings represents one aspect of the flow field not contained in the 
stability analysis of isolated vortex rings. Contour plots of the circumferential 
vorticity shown in figure 7(c) show little change from the pure axisymmetric 
evolution discussed above. However, the streamwise vorticity contours recorded at 
various s-locations over one axial wavelength exhibit some interesting features. 
While in the braid region (s = 1) the streamwise vorticity component has merely 
become stronger as compared to the earlier time, we observe the emergence of weak 
streamwise vorticity of opposite sign in the ring region at s = 3.15. 

The interpretation of these findings will become more obvious at time t = 9.69 
(figure 8). The filament side view now clearly shows the rolling up of the vorticity 
layer into vortex rings. These rings, in the side view, exhibit a pronounced waviness, 
thus indicating the existence of streamwise ring vorticity. Notice, however, that the 
streamwise ring vorticity is pointing in the opposite direction from the streamwise 
braid vorticity at  the same azimuthal location. In the ring region, as vorticity has 
become more concentrated in a curved vortex tube, the local induction effect has 
gained importance. It has thus reversed the initial trend and accelerated the outer 
filament sections past the inner ones. In other words, while the global induction effect 
continues to determine the sign of the streamwise braid vorticity, the direction of the 
streamwise vorticity component in the ring region is due to the local induction effect. 
The above change in the sign of the streamwise ring vorticity reflects the tendency 
of the ring to rotate around its unperturbed centreline, as sketched in figure 1 of 
Widnall et al. (1974). It is this self-induced rotation rate of the vortex ring that needs 
to vanish for the instability to grow in the overall strain field. In  order to assess how 
the external strain field in an axisymmetric jet differs from the isolated vortex ring 
owing to the existence of further rings, we analyse the situation of one point vortex 
pair as opposed to a train of point vortex pairs. The comparison of the external 
streamline patterns shown in figure 9 indicates that the influence of the periodic 
array of vortex rings is minor. We will discuss the influence of the other main 
difference, namely the formation of streamwise braid structures, below. 

Figure 8 furthermore displays the braid region’s growing depletion of vorticity. 
The streamwise distance between the initially equally spaced filaments is now largest 
in the downstream half of the braid, reflecting the shift of the stagnation point and 
the corresponding asymmetry in the extensional strain field, as discussed above for 
the axisymmetric flow. This also represents the reason why the streamwise 
component of the vortex filaments has a maximum value just upstream of the ring 
region. This streamwise vorticity generated in the braid region now begins to wrap 
around the vortex ring. As a consequence, contours of constant streamwise vorticity 
in the ring region at x = 3 show two maxima on either side of the streamwise ring 
vorticity, which is of opposite sign. A series of streamwise vorticity contour plots at 
several 2-locations distributed over one axial wavelength provides a clear picture of 
how the braid vorticity wraps around the vortex rings. This situation resembles the 
flow visualization results obtained by Bernal & Roshko (1986) as well as by Lasheras 

10-2 
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FIGURE 8(a-d). For caption see facing page. 

& Choi (1988) for the plane mixing layer. While they observe a single array of 
counter-rotating streamwise vortex pairs in the braid region, the spanwise rollers are 
imbedded between two such layers of vortex pairs. 

The axial view of the vortex filaments shows that the corrugation of the vorticity 
has essentially stopped growing. This is in accordance with the reversal of the sign 
of the streamwise vorticity in the ring region, which no longer acts to increase the 
corrugation. The contour plot of the circumferential vorticity shows the formation 
of nearly circular cores of the vortex rings. They furthermore demonstrate the more 
intense depletion of the downstream half of the braid region. 

Some of the above trends have become even more pronounced at t = 12.81 (figure 
10). The filament side view exhibits a growing waviness of the vortex ring cores, 
indicating a growing streamwise component of the ring vorticity. This is the result 
of the slight self-induced rotation of the ring around its centreline since t = 9.69. 
Since the rotation rate is very low, the potential for the ring to develop an instability 
appears to be given. However, from the streamwise view it is obvious that the 
corrugation has not grown any further, which seems to contradict the notion of a 
vortex ring instability. As more vorticity continues to wrap around the rings, the 
braid regions are further depleted. However, strong streamwise vorticity continues 
to be generated. While the circumferential vorticity contours show the existence of 
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FIQIJRE 8. The radially perturbed jet with RIB = 22.6 at time 9.69: (a) side view and (b) streamwise 
view of the vortex filaments. The axisymmetric shear layer rolls up into vortex rings that already 
exhibit a waviness. Notice that at the same azimuthal position the streamwise ring vorticity and 
the streamwise braid vorticity are of opposite sign, thus indicating the growing importance of local 
induction in the ring region. The corrugation has not grown further since t = 7.81. (c) Contours of 
the circumferential vorticity component. They show the formation of vortex rings with round cores 
as well as the more intense vorticity depletion of the upstream neighbourhood of the ring. (d-h) 
Contours of the streamwise vorticity at r = 2.0, 2.75, 3.0, 3.76, 5.0. This sequence shows how the 
braid vorticity begins to  interact with the ring vorticity of opposite sign. 

almost perfectly circular vortex ring cores, the sequence of streamwise vorticity 
contours at different x-locations indicates that the emerging axial braid vortices have 
become more concentrated and grown strong enough to entrain and eject fluid. This 
is evident from the increasing alignment of these contours in the radial direction, as 
indicated in the figure by arrows. In the ring region, on the other hand, the contours 
of the streamwise vorticity are more aligned in the circumferential direction. 

At time t = 15.94, the increasing concentration of the axial vortices in the braid 
region has become even more evident, cf. the side view as well as the streamwise 
vorticity contours a t  x = 7 in figure 11. Faced with a situation of rapidly decreasing 
time-steps and increasing number of nodes, we stop our calculation at time t = 20.63 
(figure 12). While the axial vortex ring corrugation has still grown slightly, the 
streamwise view shows that the radial ring waviness has actually decreased. These 
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FIQURE 9. The external strain field in. which a point vortex at x = 0, y = - 1.5 finds itself. (a) The 
case of a single point vortex pair, ( b )  the case of a periodic array of point vortex pairs. The small 
difference between the two streamline patterns indicates that the stability characteristics of an 
isolated vortex ring can be expected to be similar to those of a periodic train of vortex rings. 

observations will be discussed in more detail below in the context of vortex ring 
instability. The axial braid structures have now collapsed into nearly round vortex 
tubes, even close to the ring region, cf. the streamwise vorticity contours at x = 4. 
We notice that, with increasing time, particularly the braid vorticity is being 
resolved less and less well, as almost all filaments have become absorbed into the 
vortex rings. In addition, more and more small-scale structures are being generated 
in the flow field, leading us to suspect that viscosity, which is absent in our 
simulations, might become increasingly important in the real flow. However, in order 
to demonstrate that the present calculation up to time t = 20.63 is well resolved and 
that the results are fully converged, we show the results of a second simulation with 
poorer discretization for the same time in figure 13. Here the number of filaments 
employed per streamwise wavelength was 39 (instead of 59), the number of nodes per 
filament 80 (instead of 120), and the number of periodic images in the streamwise 
direction two (instead of three). The side and front views in figures 12 and 13 show 
essentially identical vorticity fields, with the obvious difference that the same 
structures in figure 13 are represented by fewer filaments. However, the ring 
waviness, the axial braid structures, and even h e  details of the vorticity 
configurations are reproduced with great accuracy by the less well-resolved 
calculation, thereby establishing confidence in the numerical results and their 
convergence. 

In order to determine the nature of the relevant mechanisms leading to the jet’s 
evolution as described above, a comparison with corresponding plane shear layer 
investigations promises to be helpful, since for the present ratio R/B = 22.6 
curvature effects are expected to be of limited importance. The experimental 
observations of concentrated streamwise braid vortices in the plane mixing layer 
(Bernall981; Bernal & Roshko 1986; Lasheras & Choi 1988) are a result of a collapse 
mechanism of the streamwise braid vorticity layers as analysed numerically by Lin 
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FIQURE 10. The radially perturbed jet with RIB = 22.6 at time 12.81. (a) Side view: while the 
streamwise vorticity component in the vortex rings is growing slowly, regions of concentrated axial 
vorticity begin to form in the braids. (b) Streamwise view of the vortex filaments. The corrugation 
of the vorticity field has stopped its growth. (c) Contours of the circumferential vorticity 
component show the existence of vortex rings with nearly perfectly round cores. ( d )  Contours of 
the streamwise vorticity at x = 1 and x = 4. Notice how the contours of the streamwise braid 
vorticity tend to align themselves in the radial direction, as they have grown strong enough to 
entrain and eject fluid. 
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FIGURE 12. The radially perturbed jet with RIB = 22.6 at time 20.63. (a) Side view: regions i f  
concentrated streamwise vorticity have formed in the braids. While the axial vortex ring waviness 
has grown slightly, the radial ring waviness actually has declined, and we observe no indications 
of a rapidly growing vortex ring instability. (a) Streamwise view of the vortex filaments. (c) 
Contours of the streamwise vorticity at x = 4 and x = 7. The axial braid structures have now 
collapsed into almost round tubes even near the ring region at  x = 4. 

& Corcos (1984) and theoretically by Neu (1984). These authors investigated the 
idealized situation of a plane vorticity layer under the influence of a strain field 
compressing the layer in the normal direction while stretching it in the streamwise 
direction. They showed that under these circumstances, collapse will occur provided 
that a non-dimensional parameter involving the layer strength divided by the square 
root of the product of strain and viscosity exceeds a certain value. The combined 
effect of the strain field and the self-induced velocity of the streamwise vorticity layer 
then leads to a net transport of the vorticity, resulting in its collapse into round 
vortex tubes. In the plane shear layer, the strain field is provided by the large-scale 
two-dimensional rollers, while the streamwise vorticity results from small initial 
imperfections. The evolution of the nominally axisymmetric jet described above 
shows that the conditions for a similar collapse of the streamwise vorticity layer into 
round tubes are given here as well. In  this case, the strain field is generated by the 
emerging vortex rings, while the necessary three-dimensional perturbation is a 
consequence of the nozzle corrugation. 
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FIGURE 13. Results of a second, less well-resolved simulation of the radially perturbed jet with 
R / 8  = 22.6 at time 20.63. (a) Side view, ( b )  streamwise view of the vortex filaments. This simulation 
is identical to that of figure 12, but the discretization employed 39 filaments per streamwise 
wavelength (instead of 59), 80 nodes initially per filament (instead of 120), and two periodic images 
in the streamwise direction (instead of three). Notice the essentially identical vorticity 
configurations, indicating the converged nature of the simulation results even for long times. 

Figure 14 show the evolution of the streamwise vorticity contours in the centre of 
the braid for the jet. A comparison with figure 4 of Lin & Corcos (1984) demonstrates 
that the same combined effect of strain field and self-induced velocity is a t  work as 
in the plane mixing layer. In Lin & Corcos’ analysis of a simplified two-dimensional 
situation involving streamwise vorticity under strain, the strength of the strain field 
is constant, while the circulation of the streamwise vortices changes only as a result 
of diffusion. After an initial transient period, it is essentially constant as well. These 
conditions enable the authors to derive criteria for collapse and scaling laws for the 
times involved. Figure 15 depicts the temporal evolution of the maximum eigenvalue 
A,, of the strain rate tensor at the centre of the braid region for the present jet 
calculation. We find that it is not constant, but initially declines and then begins to 
level off. Since the collapse of the streamwise vorticity is essentially completed by 
time t = 16, a quantitative comparison with the constant-strain-rate analysis 
becomes difficult. Also indicated near t = 0 in the figure is the maximum eigenvalue 
for a plane unperturbed shear layer represented by vortex filaments located at 
y = 0 and pointing in the z-direction. This velocity profile has 

au AU -(y = 0) = - 
aY 2ua:’ 

where AU is the velocity difference across the layer. Consequently, the maximum 
eigenvalue A is 

which for the present flow field yields A,,, = 0.778. In addition, the maximum 
eigenvalue in the braid is shown for the situation in which all the vorticity is 
concentrated in a row of point vortices of strength 2n and a distance 2~ apart. For - 
this case, we have A,,, = 0.25. 
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FIQURE 15. The evolution of the maximum eigenvalue of the strain rate tensor at the centre of the 
braid region. Also indicated in the figure are the values for an unperturbed plane shear layer and 
for a periodic row of point vortices of corresponding strength. 

The circulation of the streamwise vortices as a function of time is shown in figure 16. 
We find a nearly linear increase after an initial transient period, very similar to the 
observations by Corcos & Lin (1984), cf. their figure 20. As they point out, this 
growth in the circulation of the streamwise braid vortices is a result of the tilting of 
the spanwise (or in our case circumferential) vorticity into the streamwise direction. 
Consequently, one would expect the growth to level off as soon as the braids are 
depleted of vorticity. However, in the present simulation the collapse of the 
streamwise braid vortices is completed before the streamwise vortex strength stops 
growing, again rendering a quantitative comparison with the Lin & Corcos constant- 
circulation case difficult. 

While the variation of the strain rate and the streamwise vortex circulation with 
time pose difficulties for a quantitative comparison of the collapse time observed in 
our jet calculation with the scaling laws derived by Lin & Corcos, we note that their 
analysis does predict the collapse of the present streamwise vorticity layers, as 
viscosity is absent in our simulation. Furthermore, since for the present jet the 
circumferential extent of one sign of streamwise braid vorticity is of the same order 
as its radial extent, their analysis suggests the formation of concentrated streamwise 
vortex pairs, in agreement with our results. In Part 2 of this paper (Martin & Meiburg 
1991), we will analyse the three-dimensional evolution of a helical perturbation 
wave, in which case aspect ratios very different from unity can occur, so that it is 
possible for all the streamwise braid structures to have the same sign. In conclusion, 
the above comparison suggests that the process leading to the formation of 
concentrated streamwise braid structures in the present jet is due to the same 
mechanisms as in the plane mixing layer. The present simulation does not suggest 
any mechanisms other than viscous diffusion to balance the continuing stretching of 
the braid vorticity, as the extensional strain field set up by the neighbouring vortex 
rings persists. Furthermore, in agreement with Corcos & Lin we find that the 
timescales for the evolution of the axisymmetric structures do not seem to be greatly 
affected by the emergence of a considerable three-dimensional component of the 
motion, as can be seen by comparing figure 2 and figures 10 and 11.  

Theoretical investigations of the stability of concentrated regions of vorticity 
furthermore predict two mechanisms of potential relevance to the evolving ring-like 
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FIGURE 16. The circulation of the streamwise braid vortices as a function of time increases nearly 
linearly after an initial transient period, in agreement with the observations by Corcos & Lin (1984) 
for the plane shear layer, cf. their figure 20. 

structures in the axisymmetric jet. First, there exists the possibility of a translative 
instability, as found by Pierrehumbert & Widnall (1982) for an array of Stuart 
vortices. Their investigation was subsequently extended by Klaassen & Peltier 
(1989, 1991), who demonstrated the presence of higher translative instability modes 
for the Stuart vortices as well as a corresponding instability mode for vorticity 
distributions computed numerically as nonlinear states of plane shear layers, 
Secondly, the emerging rings might be susceptible to a ring instability as analysed by 
Widnall & Sullivan (1973) and Widnall et al. (1974). 

The translative instability leads to the growth of small wavy dislocations of the 
large-scale structures' centrelines in the strain field of the neighbouring spanwise 
vortices, &s sketched in figure 9 of Pierrehumbert & Widnall. In order to analyse the 
present jet flow field with respect to the existence of a translative instability, we 
follow the evolution of the centreline of the vortex ring, i.e. the line connecting the 
vorticity maxima at  all circumferential positions. This line develops a wavy 
dislocation with a radial and a streamwise component. Figure 17 shows the evolution 
of the amplitudes of the radial (a,) and the streamwise (a,) components separately. 
In addition, the value of the angle y is plotted, where tany is given by the ratio of 
streamwise and radial amplitudes. The streamwise waviness grows initially, reaches 
a maximum, begins to decline, changes sign and subsequently begins to grow again 
before levelling off towards the end of the simulation. This behaviour reflects the 
competition between local and global induction as discussed above. During the initial 
stages, the ring is still weak, so that its outer sections trail the inner ones. 
Subsequently, the ring circulation and with it the self-induced velocity grow, and the 
ring begins to rotate, as can be seen from the continuous and nearly linear increase of 
y. As a result, the outer ring sections catch up with the inner ones, thereby reducing 
the streamwise dislocation amplitude to zero, and overtake them, so that the 
streamwise amplitude grows again. As the ring continues to rotate, its centreline 
dislocation becomes increasingly aligned with the compressive direction of the 
overall strain field, which leads to a declining amplitude. The radial component 
shows a slight growth initially but begins to decline as the ring dislocation amplitude 
rotates into the streamwise direction. Hence the continued rotation of the ring 
prevents the translative instability from growing to large amplitudes. 
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FIGURE 17. The temporal evolution of the amplitudes of the radial (a,) and the streamwise (a,) 
components of the vortex ring waviness. Also plotted is the value of the angle y,  where tan y = 
a,/a,. The evolving vortex ring rotates continuously, thereby preventing a vortex ring instability 
from evolving. 

The ring rotation furthermore keeps a possible ring instability from reaching 
appreciable amplitudes as well, in agreement with the stability analysis of Widnall 
& Sullivan and Widnall et al. Their investigation is based on the assumption that 
such a ring instability can develop if the self-induced rotation rate of the ring is near 
zero, so that wavy dislocations can grow in the near-stagnation-point flow that exists 
in the reference frame moving with the ring. This criterion serves to determine the 
wavenumbers of unstable perturbations. As we have seen above, the present, 
relatively thin vortex ring keeps rotating for the small circumferential wavenumber 
of five, so that an exponential growth of its dislocation amplitude cannot be 
observed. Hence we realize that for the present jet the formation of concentrated 
streamwise braid vortices occurs independently of a translative or ring instability of 
the large-scale axisymmetric structures. 

3.3. Three-dimensional evolution of an axial perturbation 
In  their investigation of plane wakes, Meiburg & Lasheras (1988) and Lasheras & 
Meiburg (1990) observed the formation of two different three-dimensional vorticity 
modes depending on whether the perturbation vorticity has a streamwise or a 
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FIGURE 18. Evolution of an axisymmetric jet perturbed by a streamwise wave as well as by an  
azimuthal wave that introduces streamwise perturbation vorticity. (a) The side view at time 0.62 
indicates the form of the azimuthal wave. For clarity, only those vortex filament sections located 
at y < 0 are shown over two streamwise wavelengths. (6) Axial view of the vortex filaments. The 
contours of circumferential vorticity shown in (c) still display a nearly constant vorticity 
distribution. During the early stage the contours of the streamwise vorticity component - shown 
in (d) for x = 1 -hardly vary with x. 

transverse component. In order to investigate whether or not the jet displays a 
similar behaviour, we have carried out a second simulation in which the azimuthal 
wave introduces streamwise perturbation vorticity. This is achieved by displacing 
the filament centrelines in the axial direction by an amount x' (cf. side view in figure 
18) instead of in the radial one, as we had done above. Again, the amplitude of the 
displacement is 5 %  of the jet radius, so that we have 

x' = 0.05Rsin (k4). 
As before, the azimuthal wavenumber k is taken to be 5. As in the previous case, the 
azimuthal wave breaks the axisymmetry, and the presence of streamwise vorticity 
immediately leads to the formation of a radial vorticity component as well. At time 
t = 0.62 (figure 18) the axial view already shows a slight corrugation resulting from 
the radial velocity component due to the streamwise vorticity. While the 
circumferential vorticity contours show a slightly perturbed jet shear layer, the 



298 J .  E .  Martin and E .  Meiburg 

I 

I ,  , , \  
' x=3 .0  

-8 
-8 -4 0 4 

Y 

FIQURE 19. The axially perturbed jet with RIB = 22.6 at  time 7.66. (a) Side view and (a) 
streamwise view of the vortex filaments. Notice the growth of the streamwise and the radial 
vorticity components. (c) Contours of the circumferential vorticity component. (d ) Contours of the 
streamwise vorticity at z = 1 show that the streamwise vorticity component still has a more sheet- 
like character in the braids. Near the ring region at x = 3, (e), the contours begin to look slightly 
rounded. 
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FIGURE 20. The axially perturbed jet with RIB = 22.6 at time 9.45. (a) Side view and (b)  
streamwise view of the vortex filaments. The streamwise velocity of filament sections further away 
from the jet axis is increasing, thus indicating the growing importance of local induction in the ring 
region. (c) Contours of the circumferential vorticity component. They show the formation of vortex 
rings with round cores. (d )  Contours of the streamwise vorticity at z = 1. Notice the increasing 
alignment of the vorticity contours with the radial direction, which is due to the growing radial 
velocity component generated by the streamwise vorticity. 

streamwise vorticity contours still reflect the nature of the initial perturbation, i.e. 
they hardly change as a function of the streamwise position. 

The side view at time t = 7.66 (figure 19) exhibits a growth of the filament 
waviness, i.e. of the streamwise vorticity component. This is because those filament 
sections displaced towards the jet axis by the streamwise perturbation vorticity have 
moved downstream at a faster rate than those sections displaced towards larger 
radii. In this way, the streamwise vorticity component haa been amplified. It is hence 
obvious that, as in the previous simulation, the global induction effect dominates 
over the local induction effect initially. The amplification of the streamwise vorticity 
component, in turn, has led to a growing corrugation, i.e. radial motion, as seen in 
the axial view. In other words, the radial and axial vorticity components amplify 
each other at  this stage. This interaction, however, is soon affected by the formation 
of concentrated vortex rings, as shown in the side view of figure 19. The contours of 
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FIQURE 21 (a-d). For caption see facing page. 

circumferential vorticity also display the formation of vortex rings, very much in the 
same way as for the previous calculation. The streamwise vorticity contours begin 
to look slightly rounder near the evolving vortex rings a t  x = 3, whereas they still 
keep a more sheet-like character in the braids at x = 1. 

From the side view at time t = 9.45 (figure 20), it is obvious that the growing 
importance of the local induction in the vortex rings is beginning to reverse the 
earlier effect of the global induction, i.e. the outer sections of the vortex rings are 
catching up with those nearer the jet axis. This is consistent with the axial view, 
which shows a slowing growth of the corrugation. In  the braid region, however, the 
streamwise vorticity component continues to grow under the action of the 
extensional strain field maintained by the vortex rings. The vortex ring cores are 
becoming more circular, as indicated by the circumferential vorticity contours. 

By time t = 12.58 the streamwise component of the ring vorticity has actually 
reversed its sign, i.e. the outer ring sections have overtaken the inner ones, as can be 
seen in the side view of figure 21. This is confirmed by the series of streamwise 
vorticity contour plots for various x-locations. These show the streamwise ring 
vorticity at x = 3 embedded between two regions of streamwise vorticity of opposite 
sign, which is due to the braid vortices' wrapping around the vortex rings. The braid 
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FIGURE 21. The axially perturbed jet with RIB = 22.6 at time 12.58. (a) Side view: while the 
streamwise vorticity component in the vortex rings has reversed its sign, concentrated axial 
vortices have formed in the braids. (b) Streamwise view of the vortex filaments. (c) Contours of the 
circumferential vorticity component. (d-h) Contours of the streamwise vorticity a t  z = 1, 2, 3, 4, 
5. Notice the interaction of the axial braid vortices with the streamwise ring vorticity of opposite 
sign. 

vortices have become quite strong, and they are entraining and ejecting fluid 
between their legs, thereby leading to an increasing alignment of the streamwise 
vorticity contours in the radial direction. 

At time t = 15.70 (figure 22), the vorticity field has acquired a shape very similar 
to that of the previous simulation: vortex rings featuring wavy cores, with 
concentrated streamwise vorticity formed in the braid regions wrapping around the 
rings. In both cases the outer ring sections are further advanced than those nearer 
to the jet axis, resulting in a situation where the streamwise braid vorticity and the 
streamwise ring vorticity at the same azimuthal location are of opposite sign. In the 
braid region, the streamwise vorticity has collapsed into almost perfectly round 

We hence find that, unlike in the plane wake, the introduction of radial and axial 
perturbation vorticity, respectively, does not lead to principally different three- 
dimensional vorticity configurations. Quite to the contrary, the vorticity fields look 

cores. 
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FIGURE 22(u-d). For caption see facing page. 

very similar, which indicates that the configuration we observe towards the end of 
our simulation is fairly insensitive to the exact nature and form of the initial 
perturbation. 

3.4. InfZuence of the ratio R / 8  
For a jet of constant radius R, the velocity gradient across the shear layer decreases 
as the shear-layer momentum thickness 8, i.e. the filament core radius a, increases. 
At  the same time, the self-induced velocity of the emerging vortex rings will be 
affected by 0 as well. In  order to investigate how the competition between local and 
global induction varies with RIB, we have performed a calculation in which 8 has 
been doubled by setting a = 1, while R remains the same as in the previous 
simulations. As in the simulation described in J 3.2, the perturbation vorticity 
introduced by the azimuthal wave has a radial component only. Again, we select the 
axial wavelength on the basis of the linear stability results given by Michalke & 
Hermann (1982), which for the present parameters predict a most amplified 
wavelength of approximately 3x .  At time t = 13.13 (figure 23) we observe the 
emergence of vortex rings as well as of streamwise vorticity very much in the same 
fashion as for the axial perturbation case described in 3.3 at  t = 7.66 and R / 8  = 22.6. 
The streamwise vorticity contours are still dominated by the initial perturbation, 
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FIQURE 22. The axially perturbed jet with RIB = 22.6 at time 15.70. (a) Side view. (b) Streamwise 
view of the vortex filaments. The vortex filament configuration is quite similar t o  that observed in 
the previous simulation of a radially perturbed jet. (c)  Contours of the circumferential vorticity 
component. (d-g) Contours of the streamwise vorticity at x = 1, 3, 4, 6. Again, we notice the 
collapse of the streamwise braid vorticity into round tubes, similar to the description by Lin & 
Corcos (1984) as well aa Neu (1984) for plane shear layers. 

and as a result of the increased thickness of the vorticity layer, the evolving 
streamwise structures are fatter. 

The picture for RIB = 11.3 and t = 16.72 (figure 24) still resembles that for R / 8  = 
22.6 and t = 12.58 (figure 21), in that concentrated elongated structures have formed 
in the braid regions and begun to wrap around the vortex rings. However, there is 
a key difference in the shape of the vortex rings. The outer sections have not 
overtaken the inner ones. This is consistent with our expectation of a reduced self- 
induced velocity of the vortex rings as a result of their increased core size. It is 
instructive to study the vortex filaments of the rings separately from those in the 
braids. Figure 24 shows that the ring sections at intermediate radii slightly trail the 
ones at  the smallest and largest radii, although the ring filaments essentially lie in a 
radial plane. Furthermore, the plot of the braid vorticity also provides a clear picture 
of how the braid vorticity wraps around the vortex rings. 

A t  time t = 19.84 (figure 25) the situation has hardly changed as far as the 
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FIGURE 23. The axially perturbed jet with RIB = 11.3 at time 13.13. (a) Side view and ( b )  
streamwise view of the vortex filaments. The evolution is qualitatively the same as for the jet with 
RIB = 22.6. (c) Contours of the streamwise vorticity at x = 1. Notice that owing to the increased 
thickness of the jet shear layer the emerging streamwise braid vortices are fatter than before. 

streamwise ring vorticity is concerned. However, we observe that the ring’s 
corrugation is continuing to grow. Whereas for R / 8  = 22.6 the self-induced vortex 
ring rotation and the related reversal in the sign of the streamwise ring vorticity had 
acted to limit the growth of the corrugation, and in this way to balance the effect of 
the streamwise braid vorticity (which tends to increase the corrugation), the 
balancing effect is missing for R/8  = 11.3, at least up to the final time of the 
simulation. Comparison of the two simulations thus indicates that for the smaller 
value of R/B more radial ring vorticity is produced. The reduced rotation rate of the 
ring for RIB = 11.3 furthermore results in the vortex ring’s being more aligned with 
the extensional direction of the external strain field than before. This indicates that 
a vortex ring instability as described by Widnall might be occurring, as will be 
discussed below. 

Some of the global features of the above calculations are captured in figure 26, 
which shows the growth of the spatially averaged momentum thickness with time. 
For the axisymmetric calculation we observe the initial growth of the linear 
instability, which then becomes saturated as nonlinear effects gain importance. For 
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FIGURE 24(a-d). For caption see p. 307. 

the case of an additional subharmonic perturbation, we would expect to see a 
subsequent period of renewed growth, as the flow evolves towards a vortex pairing 
event. Owing to the relatively large initial radial perturbation of 5%,  the three- 
dimensional flow described in $3.2 has a larger value of 8 from the start. Even though 
8 grows at  a slightly higher rate than for the axisymmetric case, the difference is not 
dramatic, and we observe saturation after a similar time. This is consistent with the 
fact that a ring instability does not develop once the concentrated vortex rings have 
formed. If the evolution of the flow were qualitatively similar for RIB = 11.3, we 
would expect saturation to occur at approximately twice the value of8 as before, i.e. 
at about 8 = 0.95. However, the calculation corresponding to R/B = 11.3 yields a 
different picture. As figure 26 shows, 8 does not yet show any sign of levelling off at 
the final time of our calculation. This appears to be due to the continuing growth of 
the vortex ring waviness seen in figures 24 and 25 and is consistent with the notion 
of a vortex ring instability. 

The most striking difference between the R / 8  = 22.6 simulation and that 
corresponding to R / 8  = 11.3 is the growing amplitude of the vortex ring dislocation. 
Figures 24 and 25 demonstrate that the ring has not rotated about its unperturbed 
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FIGURE 24(e-h). For caption see facing page. 

centreline between times t = 16.72 and t = 19.84, so that the criterion for vortex ring 
instability according to the scenario of Widnall et al. (1974) is satisfied. Figure 27 
depicts the temporal evolution of the amplitudes of the radial (a,) and the streamwise 
(a,) components of the vortex ring waviness, along with the value of the angle y ,  
where tany is again given by the ratio a,/a,. This confirms that the rotation rate of 
the ring is near zero. The growth of the amplitude of the radial component is nearly 
exponential, even up to fairly large amplitudes, much in the same way as in the 
experimental measurements of Widnall & Sullivan, cf. their figure 9. The amplitude 
of the streamwise component, on the other hand, levels off and later begins to decline. 
In the following, we will attempt to quantitatively compare our computational 
results with those of their stability analysis in order to determine whether it can 
provide an explanation for the growing vortex ring dislocation. We have to keep in 
mind, however, that the present situation varies from the one investigated by 
Widnall et al. in several respects. First of all, our flow field is evolving in time, so that 
the strength of the emerging vortex rings changes continuously and the vorticity 
distribution over their cores can be quite different from the one assumed by Widnall 
et al. Furthermore, we deal with a periodic array of vortex rings as opposed to an 
isolated one. And finally, the vortex rings evolving in our numerical simulation are 
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FIGURE 24. The radially perturbed jet with R / 8  = 11.3 at time 16.72. (a) Side view. (b) Streamwise 
view of the vortex filaments. Concentrated streamwise vortices wrap around the vortex rings in a 
way very similar to the case R/O = 22.6. (c-f)  Separate side and axial views of the ring and the braid 
filaments. (g-k) Contours of the streamwise vorticity a t  z = 3, 4, 5, 6, 7 display the interaction of 
the streamwise ring and braid vorticity. --- denotes the location of the vortex ring. 

connected by braid regions which acquire a strong streamwise vorticity component 
and interact with the rings. 

Widnall et al. analyse the stability of vortex rings with two different types of 
vorticity distributions, a constant one and a distributed one. The case in which 
vorticity is distributed according to 

W ( T )  = (rZ-u2)2, 

a being the core radius, appears to be closest to the numerically computed vorticity 
distribution. This vorticity distribution is shown in figure 28 for different values of 
a, along with the numerically computed distributions for different times at the 
representative location 4 = x/20. Obviously, it is difficult to determine an effective 
core radius for the ring evolving in the simulation. While the vorticity distribution 
at time t = 19.84 suggests a core radius u somewhere between 1 and 1.5, the vortex 
ring has already undergone considerable stretching at this time, and one would 
expect the effective core radii at earlier times, which are more relevant for the onset 
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FIQURE 25. The radially perturbed jet with R / 8  = 11.3 at time 19.84. (a) Side view, (b) streamwise 
view of the vortex filaments, (c) separate axial view of the ring filaments. Notice that the ring 
corrugation is still 

r 
FIGURE 26. Growth of the momentum thickness (averaged over the circumference and one 
streamwise wavelength) as a function of time : . . . . . * , axisymmetric calculation ; ---, azimuthal 
perturbation of wavenumber 5 introducing radial perturbation vorticity, RIB = 22.6; -, R / 8  = 
11.3. For R / 8  = 11.3 we do not observe saturation, which appears to be linked to the continuing 
growth of the vortex ring waviness. 
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FIGURE 27. The temporal evolution of the amplitudes of the radial (a,) and the streamwise (a,) 
components of the vortex ring wavineas for the jet with R / 8  = 11.3, along with the value of the 
angle y ,  where tan y = a,/a,. The rotation rate of the ring is near zero. The amplitude of the radial 
component grows nearly exponentially, indicating the presence of a vortex ring instability. 

of the instability, to be somewhat larger. The contours a t  earlier times, e.g. t = 7.5, 
however, are far from being circular, and hence we will use the value a = 1.5 for the 
comparison. We then have a/B = 0.3 and ka = 1.5. The stability analysis by Widnall 
et al. holds in the limit a/R+O and ka  = 0(1), so that it is questionable whether it 
can accurately predict the instability modes of a relatively fat ring such as the one 
evolving in our simulation. The theory predicts instability to occur for n waves on 
the ring, where 

n = KR/a,. 

Here K = ka, is evaluated from the dispersion relation as the constant for which a 
perturbation of wavenumber k produces no self-induced rotation of a straight vortex 
filament of effective cross-section a,. According to Widnall et al. for the algebraic 
vorticity distribution given above, we have a, = 0 . 7 ~ .  Furthermore, they compute 
the value of K = 2.7, so that, with R = 5 ,  we get 

n = 12.86, 

so that we would expect the ring to develop an instability with approximately 13 
waves as opposed to 5.  On the other hand, Widnall et al. report that their theory is 
in good agreement with an experimental observation for our value of a/R = 0.3 of 
n = 7 ,  which is a wavenumber not too different from ours of n = 5.  Apparently, the 
exact vorticity distribution across the vortex ring core has a strong influence on the 
self-induced ring velocity. 

Our simulation results can be compared to the theory in an alternative way, which 
does not immediately require any assumptions concerning the form of the vorticity 
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distribution across the core. We can directly extract the self-induced ring velocity 
from our simulation, non-dimensionalize it with the circulation r a n d  radius R of the 
ring, and then for this dimensionless velocity compare the theoretical wavenumber 
obtained from figure 4 of Widnall et al. with our value of n = 5. Our numerical 
simulation shows the unstable ring moving with a self-induced velocity of 0.45. If we 
assume that the ring contains approximately two thirds of the circulation per 
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FIGURE 28. (a) The fourth-order algebraic vorticity distribution employed by Widnall et al. (1974) 
for different values of a, along with (b) the numerically computed distributions for times 7.5, 13.13, 
16.72 and 19.84 at the representative location q5 = a/20. The figure indicates that for comparison 
purposes our simulation corresponds to a value of a somewhere between 1 and 1.5. 

streamwise wavelength, r = 2x,  we obtain, with R = 5 ,  a value of V = 4.5, again 
resulting in azimuthal wevenumbers significantly larger than 5. 

When comparing the dimensionless growth rate in our simulation with the value 
provided by the stability analysis, we obtain better agreement. The evolution of the 
radial component of the ring waviness shown in figure 27 indicates an average growth 
rate a between t = 0 (a, = 0.5) and t = 20 (a, = 3) of 0.090. By again using r = 2x 
and R = 5, we obtain the dimensionless growth rate a = 0.9. Widnall et al., on the 
other hand, for a, = 0 . 7 ~  and R = 5 obtain a = 1.17 from their equation (14). 

In  summary, it appears that the present simulation does give rise to a vortex ring 
instability. This point of view is supported by the vanishing rotation rate of the ring 
as well as by the exponential growth of the radial component of the vortex ring 
waviness. While the wavenumber compares poorly with stability theory, the 
agreement for the growth rate is slightly better. Considering that the flow field of an 
evolving jet is very different in many respects from that of an isolated vortex ring, 
and keeping in mind the parameter range for which the stability theory holds, we can 
probably not expect better quantitative agreement. 
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FIGURE 29. The radially perturbed jet with R / 8  = 22.6 a t  time 0.62. The initial amplitude of the 
azimuthal perturbation wave is five times smaller than in the simulation described in $3.2, aa can 
be seen by comparing this streamwise view of the vortex filaments with figure 6(b). 

FIGURE 30. t = 9.84: (a) side view and (b) streamwise view of the vortex filaments. The evolution 
of both the ring region and the braid region proceeds much more axisymmetrically than for the 
larger amplitude. 

3.5. InJEuence of the azimuthal wawe amplitude 
In  the following, we will investigate the effect that the initial amplitude of the 
azimuthal wave has on the evolution of the flow. To that end, we have carried out 
a simulation in which the initial corrugation amplitude is 1 YO of the jet radius, as 
opposed to the 5 %  amplitude employed before, so that we get 

r = R(1+0.01 sin (kq5)). 

The streamwise wave amplitude is left unchanged at 5 YO of the average circulation 
per unit length, and the core radius (T is 0.5 as in the first simulation. The streamwise 
view in figure 29 shows the reduced corrugation amplitude at  time t = 0.62. The two- 
dimensional roll-up proceeds in a fashion very similar to before. However, since the 
initial radial perturbation vorticity is significantly reduced compared to the previous 
simulation, streamwise vorticity is being generated at a much slower rate, and most 



Three-dimensional evolving jets 313 

FIQURE 31. t = 16.09: (a) side view and ( b )  streamwise view of the vortex filaments. While we 
observe the formation of concentrated vortex rings, most of the braid vorticity is being entrained 
into the vortex rings before it has a chance to develop a strong streamwise component by being 
stretched in the braid region. As a result, we can expect at best the formation of very weak 
Concentrated axial vortex tubes in the braids. 

of the braid filaments become entrained into the vortex ring before they acquire a 
significant streamwise vorticity component. An immediate consequence of the 
reduced streamwise vorticity is the slow increase in the corrugation amplitude, as can 
be seen in the streamwise view of figure 30 ( t  = 9.84). As a result, the vortex ring does 
not develop regions of large curvature, and the self-induced streamwise velocity 
remains too small to accelerate the outer ring sections past the inner ones, i.e. to 
induce a rotation of the ring. Hence not much streamwise vorticity is generated in 
the ring region, and the final shape of the ring ( t  = 16.09, figure 31) does not display 
a strongly three-dimensional character. 

4. Summary and conclusions 
The simulations discussed above represent an attempt to understand some of the 

inviscid mechanisms governing the three-dimensional evolution of axisymmetric 
jets. We have employed the approach that has already led to some insights into the 
three-dimensional structure of plane shear layers and wakes m well, in that we try 
to explain the early three-dimensional stages as instabilities of the underlying two- 
dimensional base flow. Consequently, we have first performed a purely axisymmetric 
simulation, whose results suggest two possibilities for three-dimensional instabilities : 
an instability of the evolving vortex rings, and the collapse of the braid vorticity into 
round concentrated vortices under the influence of the extensional strain field. In  the 
axisymmetric simulation, we further observed that the free stagnation point does not 
form at the centre of the braid region, but is shifted towards the jet axis. This 
behaviour of the jet is in contrast to the temporally growing plane shear layer and 
resembles the evolution of a plane wake. As a result, the upstream neighbourhood of 
the merging vortex rings becomes depleted of vorticity more rapidly than the 
downstream side, and we expect this asymmetry to translate to the formation of 
streamwise braid vorticity in the three-dimensional case as well. 

In  the first of our three-dimensional simulations for RIB = 22.6, we introduce 
radial perturbation vorticity corresponding to a corrugated nozzle. The resulting loss 
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of axisymmetry in conjunction with the axial wave immediately leads to the 
formation of streamwise vorticity. Its sign is determined by the competition between 
global and local induction, i.e. between the overall effect of the vorticity field and the 
locally self-induced velocity of a vortex tube. In general, for small ratios of R/6  the 
global induction effect can be expected to be more important, while the local 
induction should increase for large ratios of R/8.  For an azimuthal wavenumber of 
5, we find that initially the global induction dominates. The streamwise vorticity 
thus created tends to amplify the initial azimuthal perturbation in the form of the 
corrugation, thereby leading to a rapid growth of the three-dimensionality. However, 
in the emerging vortex rings the local induction effect gains importance and causes 
a slow rotation of the ring around its unperturbed centreline. At  the same time, the 
streamwise perturbation in the braid region continues to grow as a result of the 
increasing extensional strain field due to the vortex rings. This braid vorticity 
collapses into round concentrated vortices, very much as predicted by Lin & Corcos 
(1984) and Neu (1984) for the plane mixing layer. The braid vortices generate an 
axial velocity component along the cores of the vortex rings by wrapping around 
them. As our calculation proceeds past the initial stages, the vortex ring waviness 
does not seem to increase rapidly any more, and at the final time, it is actually 
aligned with the compressive direction of the external strain field. Consequently, this 
simulation does not indicate the presence of an exponentially growing ring instability. 
Apparently, even the slow ring rotation prevents such an instability from developing. 
We cannot exclude the possibility, however, that this will change for a different 
azimuthal wavenumber. 

For RIB = 11.3 and an azimuthal wavenumber of 5, we observe a different 
evolution. The increased momentum thickness of the jet shear layer leads to a 
reduction of the self-induced rotation rate of the vortex ring, and as a result the 
extensional strain causes a continuing growth of the vortex ring waviness, very much 
as in the instability scenario described by Widnall et al. An attempt to quantitatively 
compare our computational results with those of the stability theory gives poor 
agreement for the wavenumber, but better agreement for the instability growth rate. 
While the vanishing ring rotation rate as well as the exponential growth of the vortex 
ring amplitude represent strong arguments for the existence of a vortex ring 
instability, we also note that the vortex ring evolution is affected by several features 
of the flow field that are not accounted for in Widnall’s stability analysis. First of all, 
there is the presence of further rings, although their effect appears to be small. 
Secondly, the vorticity generated in the braid region strongly influences the ring 
waviness, as can be seen by comparing the two simulations of different azimuthal 
wave amplitudes. And finally, the concentrated braid vortices set up an axial flow 
component along the vortex ring cores, which might also affect the ring’s stability 
behaviour. Whether or not a vortex ring instability is occurring has a strong 
influence on the growth of the averaged jet shear-layer momentum. 

One question of interest concerns the possibility of a large-scale vortex 
reconnection process. Although the vortex filament technique, which is based on the 
assumption of inviscid dynamics, cannot capture this viscous process, we can analyse 
the dynamics of the vortical structures from the point of view of where such a 
reconnection is likely to occur. Figure 24 suggests that the A-shaped streamwise 
vortical braid structures have the potential of undergoing a reconnection event, as 
sketched in figure 32. The situation of two anti-parallel vortex tubes approaching 
each other is given there, and a topological change such as the one studied 
numerically by Ashurst & Meiron (1987) could occur. We furthermore found that 
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FIGURE 32. Scenario for a possible topological change of the streamwise vorticel braid 
structures. 

changing the azimuthal wave amplitude greatly affected the rate at which streamwise 
vorticity was generated. This result might prove useful for applications in which the 
three-dimensionality of the jet to be reduced or promoted, respectively. It is also 
worth pointing out that, in contrast to plane wakes, the introduction of radial or 
streamwise perturbation vorticity, respectively, did not lead to the evolution of 
different three-dimensional vorticity modes. This indicates a certain vortex of the 
configuration observed in our simulation. 

The vortex filament technique offers a unique possibility to evaluate the effect of 
the braid vorticity on the vortex ring evolution. We can repeat the above 
calculations and a t  an arbitrary time, when the concentrated rings have formed, we 
can remove those filaments representing the braid vortices. The calculation can then 
be continued to show how the rings would evolve without the braid vortices. 
Comparison of the two calculations would then allow us to assess the importance of 
the braid vortices with respect to the ring evolution. Further issues that will have to 
be addressed for a more complete understanding concern, among other things, the 
effect of a subharmonic streamwise perturbation. It will be most interesting to study 
the three-dimensional flow patterns that accompany pairing events. An investigation 
along these lines, together with a study of the azimuthal wavenumber influence, is 
currently under way. 
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